ELM Mitigation by Particle Injection - Towards a Model

P.H. Diamond

WCI Center for Fusion Theory, NFRI CMTFO, CASS, Dept. of Physics, UCSD

Collaborators

- Recent Work: Tongnyeol Rhee, J.M. Kwon, W.W. Xiao
 See: Phys. Plasmas 19, 022505 (2012)

 and motivating experimental results
- Fundamentals:

Irina Gruzinov, M.N. Rosenbluth

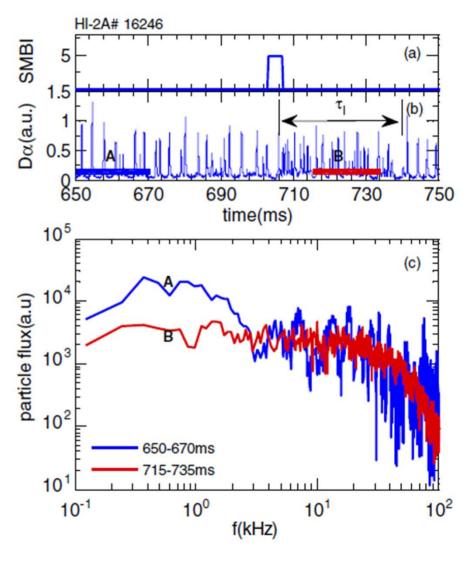
See: Phys. Rev. Lett. 89, 255001 (2002)

Phys. Plasmas (lett) 10, 569 (2003)

and earlier work with Hahm, Newman, Carreras

• Ackn: X.-L. Zou, P.T. Lang, H. Zohm

Outline


- Motivation
 - SMBI and pellet ELM mitigation
 - Mechanism? Deeper question?
- Towards a Minimal Model the CA/Sandpile
- Basic Concepts of Avalanches and SOC Profiles
- Bi-stable transport, ambient diffusion and pedestal formation
- Modeling ELMs and ELM mitigation
- Discussion and Conclusions

Motivation

- ELM control is the 'crisis du jour' of ITER
- Now well established that particle injection into pedestal mitigates ELMs i.e.
 - mitigation by SMBI and pellet injection (HL-2A, KSTAR, AUG, DIII-D, EAST, ...)
 - increases of f/f_0 , decreases $\Delta W/W_0$ (as much as OOM)
 - minimal (or no?!) degradation of confinement
 - minimal (or no?!) net fueling
 - shallow injection seems optimal

Key Question:

- Why?
- Intuitive Suggestions:
 - 'decrease in population of large
 pedestal transport
 events/avalanches with increase
 in small event population
 - HL-2A, SMBI
 - Likely type-III ELMs
 - Measured outside separatrix
 - Theory motivated

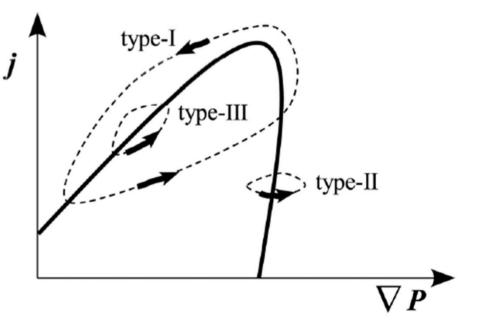


W.W. Xiao, NF 2012

Key Question:

- "These results have suggested that very shallow pellets penetrating from LFS may be sufficient to trigger rapid ELMs. The trigger mechanism is hypothesized to be the destabilization of high-n localized ballooning mode by the local pressure perturbation ... and triggers a large-n ELM crash."
 - DIII-D small pellet
 - Type-I ELMs
 - Deduced from profiles+analysis
 - Implicit: "large-n" = small?

N.B. Explanations appear fundamentally similar


Baylor, PRL 2013

Underlying Question: What really is an ELM?

- Ever increasing zoology of ELMs....
- Type-I → associated with ideal MHD peelingballooning, due some correlation with stability limits
- Type-III → resistive ballooning ???

BUT

- Connection to dynamics not established
- Profiles should be constrained near marginality → interplay of MHD, transport, ...

- ∴ a bit philosophically:
- is an ELM really a "mode"?
- is an ELM better thought of as an Edge

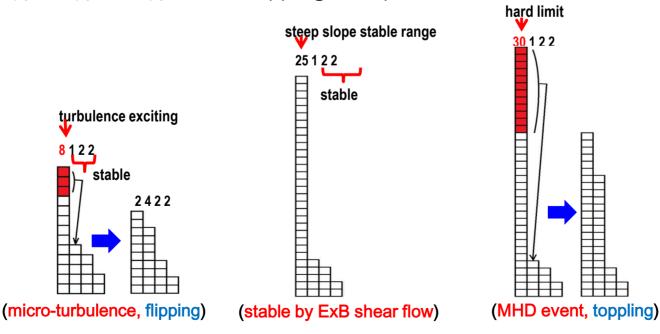
Relaxation Phenomena (ERP)?

Needed: Simple Model...

N.B. ELM phenomena far beyond "First Principle" Simulations!

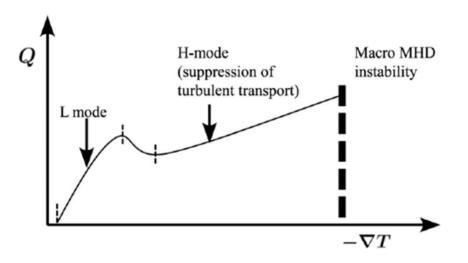
- Minimal Model of Pedestal Dynamics
- Necessary Ingredients:
 - Bi-stable flux \rightarrow capture turbulence, transport, L \rightarrow H transition
 - Fixed ambient diffusion \rightarrow capture neoclassical transport in H-mode pedestal
 - N.B. key: how does system actually organize profiles for MHD activity??
 - Hard stability limit \rightarrow capture MHD constraint on local profile. Can be local. (i.e. ballooning $\leftarrow \rightarrow \nabla P$) or integrated (i.e. peeling $\leftarrow \rightarrow J_{BS} \sim \int dr \nabla P \sim P_{ped,top}$

N.B. Transport vs 'hard stability'?


→
$$Q \sim C \left(\frac{L_{P_{crit}}}{L_{P}} - 1\right)^{\alpha}$$
 : *c*, *α* large for 'hard stability limit'

Sandpile (Cellular Automata) Model

- Toppling rule: $Z_i Z_{i+1} > Z_{crt}$ topple Y_i cells \rightarrow move adjacent
- Bi-stable toppling:


 $Z_i - Z_{i+1} > Z_{at1} \rightarrow$ toppling, threshold, transport

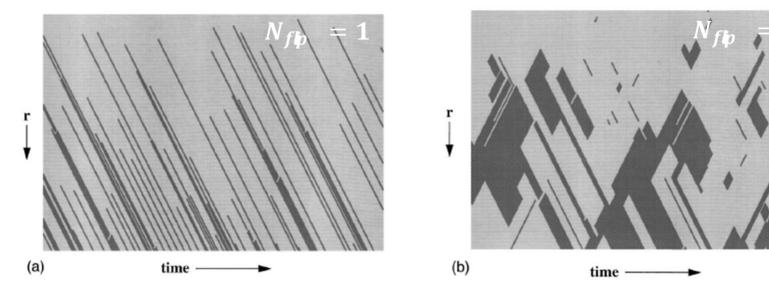
 $Z_i - Z_{i+1} > Z_{art2}$, $Z_{art2} > Z_{art1}$ \rightarrow no toppling, transport bifurcation

Sandpile Model, cont'd:

- Constant diffusion → neoclassical transport (discretized)
- N.B. Bi-stable toppling + diffusion \rightarrow S-curve model of flux

- Hard Limit $\rightarrow Z_i Z_{i+1} > Z_{hard} \rightarrow$ topple excess Z_i according to rule
- Drive:
 - Random grain deposition, throughout
 - Additional "active grain injection" in pedestal, to model SMBI

Sandpile Model, cont'd:

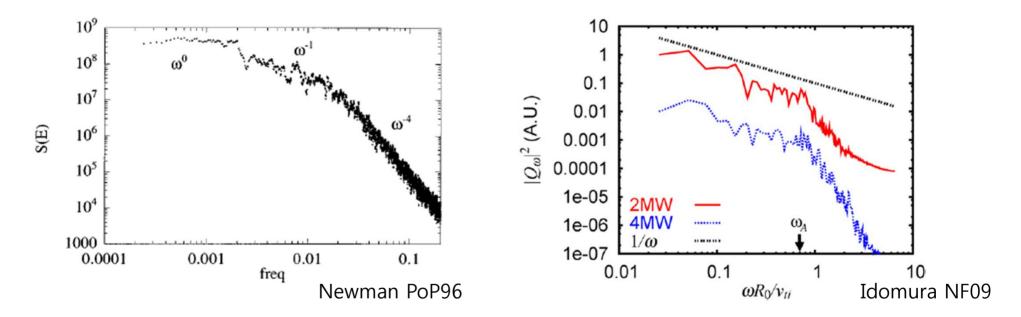

• Comparison: Turbulent Transport vs Cellular-Automata Model (sandpile)

Turbulent transport in toroidal plasma	Cellular automata model	
Localized fluctuation(eddy)	Grid site(cell)	
Local transport mechanism:	Automata rules:	
Critical gradient range for	Unstable slope range	
micro-turbulence		
Moderate local eddy-induced transport	Flipping of fixed number of grains	
Flow shear suppression of turbulence	Steep slope stable range	
Critical gradient for MHD even	Hard limit	
Strong MHD-induced transport	Large toppling of grains	
Total energy/particle content	Total number of grains (total mass)	
Heating noise/background fluctuations	Random input of grains	
Energy/particle flux	Grain flux	
Mean temperature/density profiles	Average slope of system	
Transport event	Avalanche	

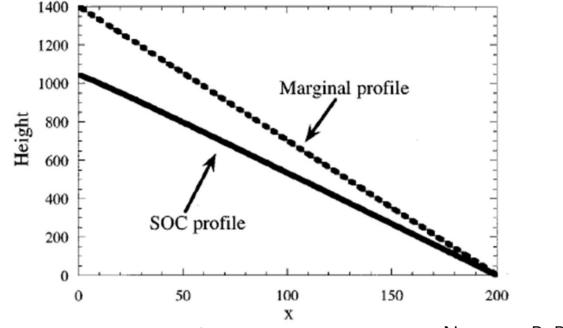
TABLE I. Analogy between transport model and cellular automata model.

Basic Phenomenology of CA Models – and Transport

- See: P.D. and Hahm, PoP'95; Newman, et al. PoP'96
- Avalanches happen:



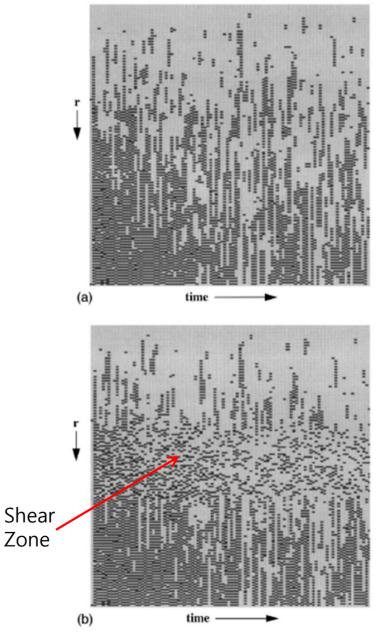
- \rightarrow broad spectrum of inward, outward propagating avalanches evident
- What is an avalanche?
 - sequence of correlated toppling or eddy over-turning events
 - akin to fall of dominos
 - typically: $\Delta_c < l_{aval} < L_p \rightarrow$ meso-scale


Are avalanches a consequence of the toy CA model? NO!

- Avalanches observed, studied in flux driven simulations
 - First: Carreras , et. al. PoP'96 \rightarrow resistive interchanges
 - GK: GYSELA, GT5D, XGC1p ...

- Comment:
 - flux tube and δf simulations and those which artificially constrain ∇P , will not capture (full) avalanche dynamics
 - avalanching not captured in quasi-linear models

What Do Profiles Look Like?

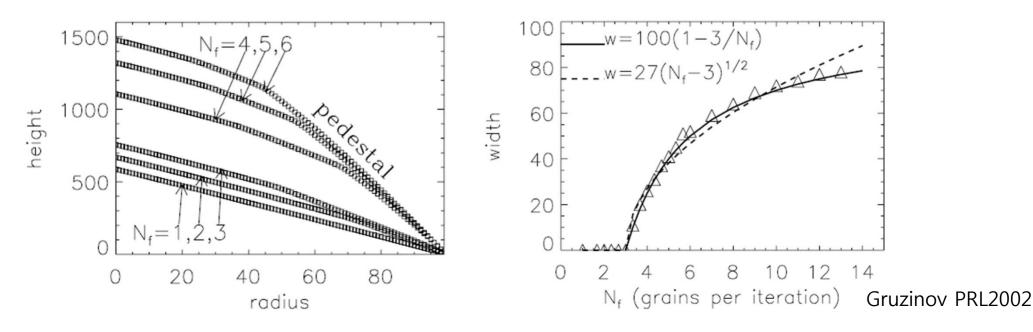

SOC profile ≠ linearly marginal profile

Newman PoP96

- For moderate drive, SOC occupation profile < marginal profile
- N.B. Important
 - Observe SOC profile approaches marginal profile near boundary
 - Flip intensity largest near boundary \rightarrow losses
 - As deposition increases, edge gradient steepens
 - → with bi-stable flux, transport bifurcation naturally initiated first, at boundary

External shear decorrelates and destroys avalanches → mean gradient steepens

- Not surprising...
- But, stability rule unchanged!
- Not a 'linear' mechanism!
- Three fundamental lessons:
 - Avalanche is basic transport event; broad spectrum over meso-scales.
 - Seemingly 'non-local', intermittent phenomena arise from local rules
 - Gradient steepening strongest at boundary →
 transport bifurcation starts at the edge


Newman PoP96

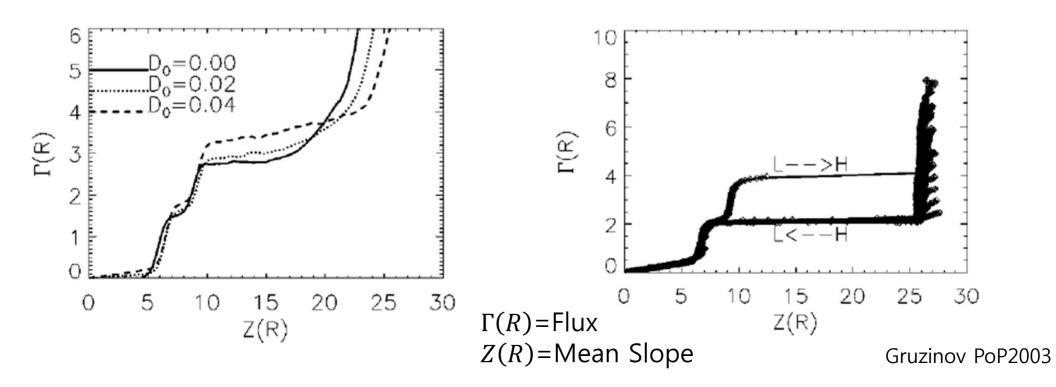
L→H Transition

• Now try bi-stable toppling rule, i.e. if $Z_i - Z_{i+1}$ large enough

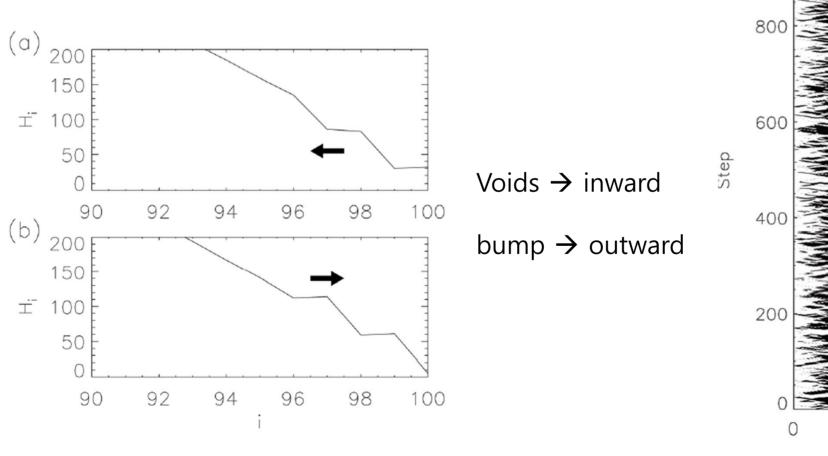

→ reduced or no toppling

- Obvious motivation is $Q = -\frac{\chi \nabla P}{1 + \alpha V'_E^2}$ and $V_E \approx \frac{c}{eB} \frac{\nabla P}{n}$
- Hard gradient limit imposed
- Transitions happen, pedestal forms!

Note


- Critical deposition level required to form pedestal ("power threshold")
- Pedestal expands inward with increasing input after transition triggered
- Now, including ambient diffusion (i.e. neoclassical)
 - N_F threshold evident
 - Asymmetry in L \rightarrow H and H \rightarrow L depositions

Gruzinov PoP2003


Hysteresis Happens!

- Hysteresis loop in mean flux-gradient relation appears for $D_0 \neq 0$
- Hysteresis is consequence of different transport mechanisms at work in "L" and "H" phases
- Diffusion 'smoothes' pedestal profiles, allowing filling limited ultimately by large events

ELMs and ELM Mitigation

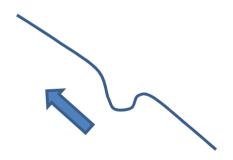
- ELMs happen!
- Quasi-periodic Edge Relaxation Phenomena (ELM) self-organize. Hard limit on $\nabla Z \ (\nabla P)$ is only MHD 'ingredient' here (a)
- ELM occurs as out \rightarrow in and in \rightarrow out toppling cascade

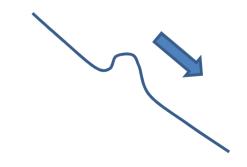
1000 Pedestal→ ELM 50 100

ELM Properties

- Periodic with period $\sim 10^{-2} \tau_p$. τ_p = grain confinement time
- ELM flux ~ 500 diffusive-flux
- ELMs span pedestal
- Period ←→ pedestal re-fill (approximate)

The What and How of ELMs?

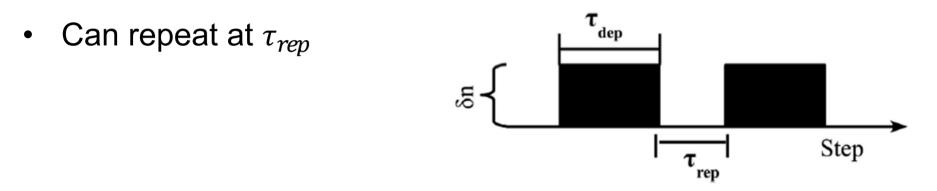

What?


- ELMs are a burst sequence of avalanches, triggered by toppling of 'full pedestal'
- ELMs are not global (coherent) eigen-modes of pedestal

The What and How of ELMs?

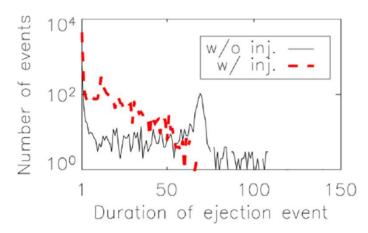
How?

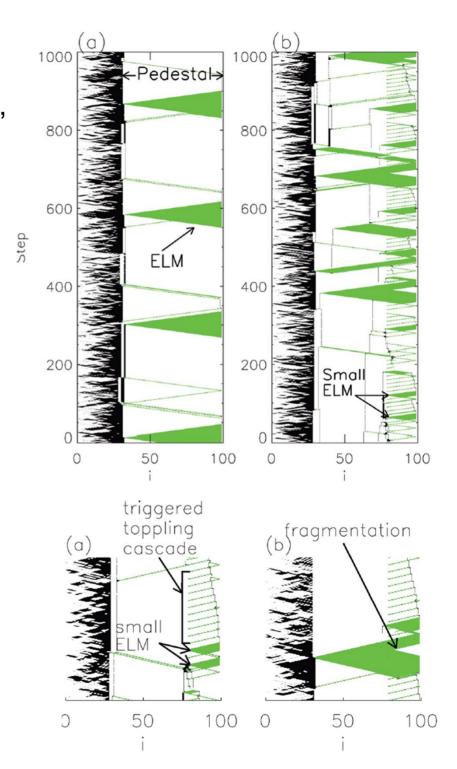
- Toppling cascade:
 - Void forms at boundary, at hard limit
 - Propagates inward, to top of pedestal, triggering avalanche
 - Reflects from top of pedestal, becomes a bump
 - (N.B. core is subcritical \rightarrow pulse cannot penetrate)
 - Bump propagates out, causing further avalanching
 - Bump expelled, pedestal refills



N.B. ELM phenomena appear as synergy of H-phase, diffusion, hard limit

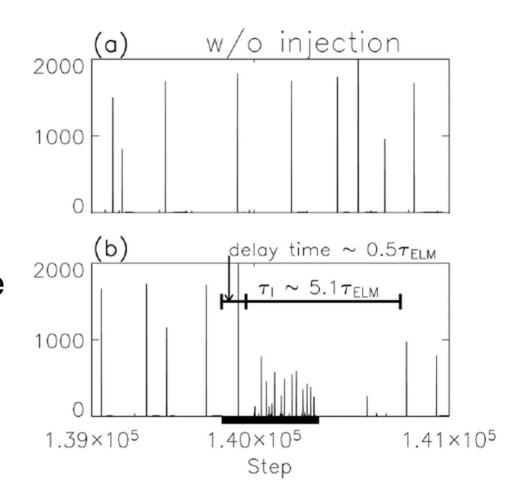
With Active Grain Injection (AGI):


• AGI works by adding a group of grains over a period τ_{dep}

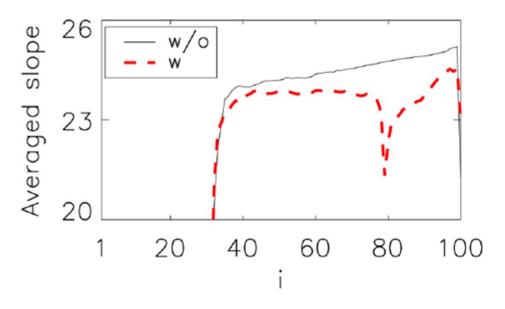

- Obviously, model cannot capture dynamics of actual SMBI, time delay between injection and mitigation. See Z. H. Wang for injection model
- Model can vary strength, duration, location

Results with AGI

 AGI clearly changes avalanche distribution, and thus ELM ejection distribution



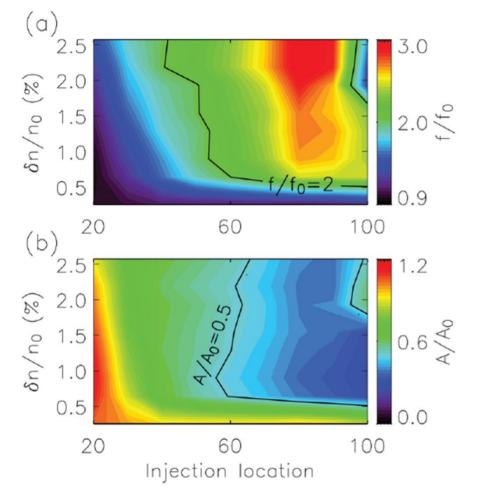
- Mechanism is fragmentation of large avalanches into several smaller ones
- Injection destroys coherency of large avalanches by triggering more numerous small ones
- Consistent with intuition


Edge Flux Evolution (in lieu D_{α})

- A/A_0 drops, f/f_0 increases
- An "influence time" τ_I is evident \rightarrow duration time of mitigated ELM state
- $\tau_I \sim 5 \tau_{ELM}$

AGI tends to reduce gradient at deposition region

- Drive triggers local toppling → prevents
 recovery of local gradient
- 'flat spot' is effective beach, upon which avalanches break
- au_I is recovery time of deformed local gradient
- Related to question of optimal deposition location



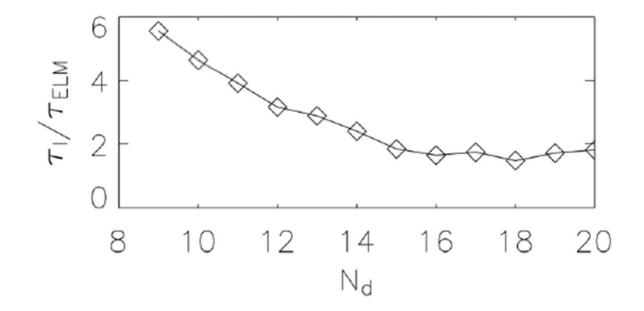
Which deposition location is optimal?

- Clue: deep deposition, at top of pedestal, allows avalanches to re-establish
 coherence 'behind' deposition zone
- Clearly desirable to prevent large avalanches from hitting the boundary
- points toward deposition at base of pedestal as optimal

Results of Study on Deposition

 $X \rightarrow \text{location}$ $Y \rightarrow \text{injection intensity}$

Color: Red high Purple low


Results of model study point toward optimal deposition near pedestal base

- Study suggests optimal location slightly inside pedestal base
- Here $20 \le i \le 100 \rightarrow$ pedestal domain

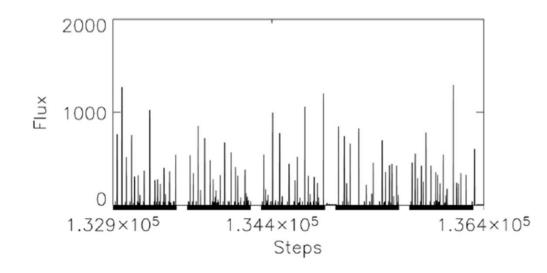
Here \rightarrow optimal location ~ 80

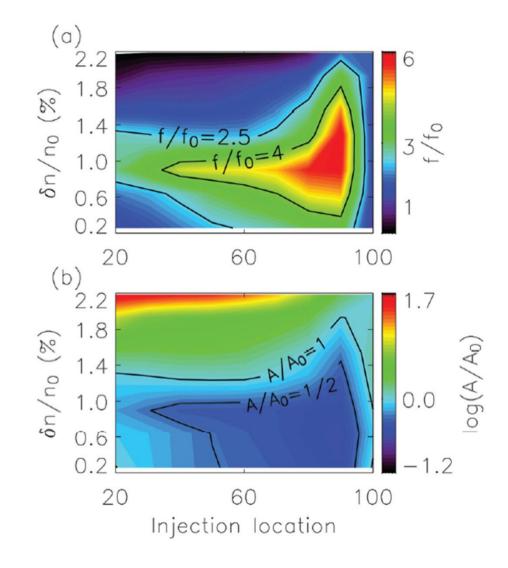
Injection Pulse Duration

- Can adjust τ_{dep} so $\frac{\tau_{dep}}{\tau_{ELM}} \sim \frac{\tau_{dep}^{exp}}{\tau_{ELM}^{exp}}$ ('exp' \rightarrow Xiao, et. al.; HL-2A)
- τ_I emerges as $\tau_I \sim 5\tau_{ELM}$ for parameters chosen
- τ_I is recovery time of injection-modified profile. This is related to, but, not quite same, as pedestal 're-fill time'.
- τ_I (normalized to fixed baseline) drops with increasing deposition

Rough comparison of dimensionless results:

TABLE II. Comparison between experimental and model results.


	Experiment	Model
f/f_0	$2 \sim 3.5$	5
f/f_0 A/A_0	1/3	1/3
$ au_I$	$\sim 3\tau_{ELM}$	$5.1\tau_{ELM}$


What of Repetitive Injection?

• Take: $\tau_{rep} \sim \tau_{ELM} < \tau_I$

Bold = AGI

- Injection near base optimal
- Stronger injection reduces effectiveness

Summary of CA Model Results

- Shallow AGI can mitigate ELMs by altering avalanche distribution
 - → reduce # larger, increase # smaller
- Mechanism is decorrelation of pedestal-spanning avalanches by inducing localized flattening of gradient. inhomogeneities in pedestal gradient hinder large events.
- Optimal deposition characteristics are:
 - Shallow \rightarrow near base of pedestal
 - Strong enough to hit hard gradient boundary

Summary of CA Model Results, cont'd

- τ_I set by duration of gradient inhomogeneities
- Can sustain mitigation with $\tau_{rep} < \tau_I$
- Shaped pulse injection correlates with (some) HL-2A results
- More generally, ELM-like phenomena emerge from synergy of bistable turbulence, ambient diffusion and hard gradient limit w/o detailed MHD dynamics

Some Open Questions

- Peeling effect?
 - Set toppling rule to $c \int dr \frac{dP}{dr} \sim P_{ped}$ ongoing
 - Nonlinear peeling evolution?
- Nature of 'hard limit' ?
 - Turbulence vs burst?
 - See Xi, Xu, P.D. submitted
- Ambient edge fueling? (c.f. Lang, Zohm; FEC 2012) i.e. what is "gain" from injection? ←→ avalanche decorrelation due beach effect?
- SMBI vs pellet ?

Concluding Thoughts

• What, really, is an ELM?

Is it better though of as an ERP?

• "What's in a name? that which we call a rose,

By any other name would smell as sweet?"

- from "Romeo and Juliet" by William Shakespeare